Abstract
Scientometric studies play a crucial role in revealing trends in scientific research. The IS discipline also has a rich history of using scientometric studies to understand its own development. However, conducting scientometric studies and identifying trends is often hampered by the time-consuming and labor-intensive manual classification of large volumes of research papers. To overcome these challenges, we take a design science approach and propose the development of a text classification-based assistance system that can support IS scholars in classifying the relevance, research paradigms, and research methods of research papers. Leveraging design science research, we designed and developed an intelligent assistance system that incorporates supervised learning text classification models and demonstrates high performance and robustness while providing a convenient user experience. Thus, the prototype not only addresses the existing challenges of scientometric studies but also lays the foundation for further improvements by simplifying scientometric studies through the integration of text classification.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Keywords: | Information Systems Research, Intelligent Assistance Systems, Scientometrics, Machine Learning, Text Classification, Design Science Research |
Fakultät: | Betriebswirtschaft
Betriebswirtschaft > Institut für Digitales Management und Neue Medien Betriebswirtschaft > Institut für Digitales Management und Neue Medien > Grundlagen der Wirtschaftsinformatik |
Themengebiete: | 300 Sozialwissenschaften > 330 Wirtschaft |
Bemerkung: | ISBN 978-1-958200-10-0 |
Sprache: | Englisch |
Dokumenten ID: | 116711 |
Datum der Veröffentlichung auf Open Access LMU: | 23. Mai 2024, 13:21 |
Letzte Änderungen: | 20. Sep. 2024, 09:02 |