Logo Logo
Hilfe
Hilfe
Switch Language to English

Ge, Anxiang ORCID logoORCID: https://orcid.org/0009-0002-6603-4310; Halbinger, Johannes ORCID logoORCID: https://orcid.org/0000-0002-6286-2736; Lee, Seung‐Sup B. ORCID logoORCID: https://orcid.org/0000-0003-0715-5964; Delft, Jan von ORCID logoORCID: https://orcid.org/0000-0002-8655-0999 und Kugler, Fabian B. ORCID logoORCID: https://orcid.org/0000-0002-3108-6607 (2024): Analytic Continuation of Multipoint Correlation Functions. In: Annalen der Physik [PDF, 1MB]

Abstract

Conceptually, the Matsubara formalism (MF), using imaginary frequencies, and the Keldysh formalism (KF), formulated in real frequencies, give equivalent results for systems in thermal equilibrium. The MF has less complexity and is thus more convenient than the KF. However, computing dynamical observables in the MF requires the analytic continuation from imaginary to real frequencies. The analytic continuation is well-known for two-point correlation functions (having one frequency argument), but, for multipoint correlators, a straightforward recipe for deducing all Keldysh components from the MF correlator had not been formulated yet. Recently, a representation of MF and KF correlators in terms of formalism-independent partial spectral functions and formalism-specific kernels was introduced by Kugler, Lee, and von Delft [Phys. Rev. X 11, 041006 (2021)]. This representation is used to formally elucidate the connection between both formalisms. How a multipoint MF correlator can be analytically continued to recover all partial spectral functions and yield all Keldysh components of its KF counterpart is shown. The procedure is illustrated for various correlators of the Hubbard atom.

Dokument bearbeiten Dokument bearbeiten