ORCID: https://orcid.org/0000-0002-6921-0204; Fumagalli, Fabian 
ORCID: https://orcid.org/0000-0003-3955-3510; Hammer, Barbara 
ORCID: https://orcid.org/0000-0002-0935-5591 und Hüllermeier, Eyke 
ORCID: https://orcid.org/0000-0002-9944-4108
  
(Februar 2024):
		Beyond TreeSHAP: Efficient Computation of Any-Order Shapley Interactions for Tree Ensembles.
	
	  AAAI Conference on Artificial Intelligence 2024, Vancouver, Canada, 20-27 February 2024.
	  
	 
	  
	   
	  
	   
	  
	     
	   Proceedings of the AAAI Conference on Artificial Intelligence.
	  
	  
	  
			Bd. 38, Nr. 13
		
	  
	   S. 14388-14396
	
  
      
        
          
             [PDF, 3MB]
          
        
      
			  
			  
               
              
  
              
			  
			  
               
              
  
              Abstract
While shallow decision trees may be interpretable, larger ensemble models like gradient-boosted trees, which often set the state of the art in machine learning problems involving tabular data, still remain black box models. As a remedy, the Shapley value (SV) is a well-known concept in explainable artificial intelligence (XAI) research for quantifying additive feature attributions of predictions. The model-specific TreeSHAP methodology solves the exponential complexity for retrieving exact SVs from tree-based models. Expanding beyond individual feature attribution, Shapley interactions reveal the impact of intricate feature interactions of any order. In this work, we present TreeSHAP-IQ, an efficient method to compute any-order additive Shapley interactions for predictions of tree-based models. TreeSHAP-IQ is supported by a mathematical framework that exploits polynomial arithmetic to compute the interaction scores in a single recursive traversal of the tree, akin to Linear TreeSHAP. We apply TreeSHAP-IQ on state-of-the-art tree ensembles and explore interactions on well-established benchmark datasets.
| Dokumententyp: | Konferenzbeitrag (Paper) | 
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen | 
| Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik | 
| URN: | urn:nbn:de:bvb:19-epub-118342-9 | 
| ISSN: | 2159-5399 | 
| Sprache: | Englisch | 
| Dokumenten ID: | 118342 | 
| Datum der Veröffentlichung auf Open Access LMU: | 25. Jun. 2024 05:55 | 
| Letzte Änderungen: | 26. Nov. 2024 17:29 | 
| DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 438445824 | 
		
	