ORCID: https://orcid.org/0000-0002-4849-8034; Huemmer, Christian; Preuhs, Alexander; Buizza, Guiulia
ORCID: https://orcid.org/0000-0001-5504-1262; Hoppe, Boj F.
ORCID: https://orcid.org/0000-0001-6248-5128; Dinkel, Julien; Koliogiannis, Vanessa; Fink, Nicola; Goller, Sophia S.
ORCID: https://orcid.org/0000-0002-0964-8386; Schwarze, Vincent; Mansour, Nabeel
ORCID: https://orcid.org/0000-0002-3467-1916; Schmidt, Vanessa F.
ORCID: https://orcid.org/0000-0002-7067-2203; Fischer, Maximilian
ORCID: https://orcid.org/0000-0001-9172-3316; Jörgens, Maximilian
ORCID: https://orcid.org/0000-0002-1877-7673; Ben Khaled, Najib
ORCID: https://orcid.org/0000-0002-9681-2542; Liebig, Thomas; Ricke, Jens; Rueckel, Johannes und Sabel, Bastian O.
(2024):
Nonradiology health-care professionals significantly benefit from AI assistance in emergency-related chest radiography interpretation.
In: CHEST: S. 1-12
[Forthcoming]
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Klinikum der LMU München
Medizin > Klinikum der LMU München > Klinik und Poliklinik für Radiologie |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ISSN: | 0012-3692 |
Sprache: | Englisch |
Dokumenten ID: | 118389 |
Datum der Veröffentlichung auf Open Access LMU: | 08. Jul. 2024, 08:46 |
Letzte Änderungen: | 12. Jul. 2024, 07:27 |