Abstract
We deduce stability and pathwise uniqueness for a McKean–Vlasov equation with random coefficients and a multidimensional Brownian motion as driver. Our analysis focuses on a non-Lipschitz continuous drift and includes moment estimates for random Itô processes that are of independent interest. For deterministic coefficients, we provide unique strong solutions even if the drift fails to be of affine growth. The theory that we develop rests on Itô’s formula and leads to pth moment and pathwise exponential stability for p >= 2 with explicit Lyapunov exponents.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Finanz- und Versicherungsmathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0894-9840 |
Sprache: | Englisch |
Dokumenten ID: | 120168 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Aug. 2024 10:06 |
Letzte Änderungen: | 16. Okt. 2024 09:22 |