Logo Logo
Hilfe
Hilfe
Switch Language to English

Geuchen, Benedikt; Oberpriller, Katharina und Schmidt, Thorsten (21. September 2024): Affine models with path-dependence under parameter uncertainty and their application in finance. In: International Journal of Theoretical and Applied Finance, Bd. 27, Nr. 2

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

In this paper, we consider one-dimensional generalized affine processes under the paradigm of Knightian uncertainty (the so-called nonlinear generalized affine models). This extends and generalizes previous results in Fadina et al. (2019) and Lütkebohmert et al. (2022). In particular, we study the case when the payoff is allowed to depend on the path, like it is the case for barrier options or Asian options.

To this end, we develop the path-dependent setting for the value function relying on functional Itô calculus. We establish a dynamic programming principle which then leads to a functional nonlinear Kolmogorov equation describing the evolution of the value function. While for Asian options, the valuation can be traced back to PDE methods, this is no longer possible for more complicated payoffs like barrier options. To handle such payoffs in an efficient manner, we approximate the functional derivatives with deep neural networks and show that the numerical valuation under parameter uncertainty is highly tractable.

Finally, we consider the application to structural modelling of credit and counterparty risk, where both parameter uncertainty and path-dependence are crucial and the approach proposed here opens the door to efficient numerical methods in this field.

Dokument bearbeiten Dokument bearbeiten