Abstract
We consider the problem of finding Pareto-optimal allocations of risk among finitely many agents. The associated individual risk measures are law invariant, but with respect to agent-dependent and potentially heterogeneous reference probability measures. Moreover, we assume that the individual risk assessments are consistent with the respective second-order stochastic dominance relations. We do not assume their convexity though. A simple sufficient condition for the existence of Pareto optima is provided. The proof combines local comonotone improvement with a Dieudonné-type argument, which also establishes a link of the optimal allocation problem to the realm of "collapse to the mean" results. Finally, we extend the results to capital requirements with multidimensional security markets.
Dokumententyp: | Paper |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Finanz- und Versicherungsmathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Dokumenten ID: | 121236 |
Datum der Veröffentlichung auf Open Access LMU: | 10. Sep. 2024 05:59 |
Letzte Änderungen: | 29. Okt. 2024 13:28 |