Logo Logo
Hilfe
Hilfe
Switch Language to English

Gühring, Ingo; Raslan, Mones und Kutyniok, Gitta (2023): Expressivity of Deep Neural Networks. In: Grohs, Philipp und Kutyniok, Gitta (Hrsg.): Mathematical Aspects of Deep Learning. Cambridge: Cambridge University Press. S. 149-199

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

In this chapter, we give a comprehensive overview of the large variety of approximation results for neural networks. Approximation rates for classical function spaces as well as the benefits of deep neural networks over shallow ones for specifically structured function classes are discussed. While the main body of existing results is for general feedforward architectures, we also review approximation results for convolutional, residual and recurrent neural networks.

Dokument bearbeiten Dokument bearbeiten