ORCID: https://orcid.org/0000-0002-6921-0204; Fumagalli, Fabian
ORCID: https://orcid.org/0000-0003-3955-3510; Hammer, Barbara
ORCID: https://orcid.org/0000-0002-0935-5591 und Hüllermeier, Eyke
ORCID: https://orcid.org/0000-0002-9944-4108
(Mai 2024):
SVARM-IQ: Efficient Approximation of Any-order Shapley Interactions through Stratification.
27th International Conference on Artificial Intelligence and Statistics (AISTATS 2024), Valencia, Spain, 2. - 4. May 2024.
In: Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, Proceedings of Machine Learning Research
Bd. 238
PMLR. S. 3520-3528
[PDF, 8MB]


Abstract
Addressing the limitations of individual attribution scores via the Shapley value (SV), the field of explainable AI (XAI) has recently explored intricate interactions of features or data points. In particular, extensions of the SV, such as the Shapley Interaction Index (SII), have been proposed as a measure to still benefit from the axiomatic basis of the SV. However, similar to the SV, their exact computation remains computationally prohibitive. Hence, we propose with SVARM-IQ a sampling-based approach to efficiently approximate Shapley-based interaction indices of any order. SVARM-IQ can be applied to a broad class of interaction indices, including the SII, by leveraging a novel stratified representation. We provide non-asymptotic theoretical guarantees on its approximation quality and empirically demonstrate that SVARM-IQ achieves state-of-the-art estimation results in practical XAI scenarios on different model classes and application domains.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 000 Informatik, Wissen, Systeme |
URN: | urn:nbn:de:bvb:19-epub-121746-1 |
ISSN: | 2640-3498 |
Sprache: | Englisch |
Dokumenten ID: | 121746 |
Datum der Veröffentlichung auf Open Access LMU: | 09. Okt. 2024 09:29 |
Letzte Änderungen: | 25. Nov. 2024 06:39 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 438445824 |