Logo Logo
Hilfe
Hilfe
Switch Language to English

Dandl, Susanne ORCID logoORCID: https://orcid.org/0000-0003-4324-4163; Casalicchio, Giuseppe ORCID logoORCID: https://orcid.org/0000-0001-5324-5966; Bischl, Bernd ORCID logoORCID: https://orcid.org/0000-0001-6002-6980 und Bothmann, Ludwig ORCID logoORCID: https://orcid.org/0000-0002-1471-6582 (2023): Interpretable Regional Descriptors: Hyperbox-Based Local Explanations. ECML PKDD 2023, Torino, Italy, September 18 -22 2023. Koutra, Danai; Plant, Claudia; Gomez Rodriguez, Manuel; Baralis, Elena und Bonchi, Francesco (Hrsg.): In: Machine Learning and Knowledge Discovery in Databases : Research Track : European conference, ECML PKDD 2023, Turin, Italy, September 18-22, 2023 : proceedings, Bd. 14171 Cham: Springer. S. 479-495

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

This work introduces interpretable regional descriptors, or IRDs, for local, model-agnostic interpretations. IRDs are hyperboxes that describe how an observation’s feature values can be changed without affecting its prediction. They justify a prediction by providing a set of “even if” arguments (semi-factual explanations), and they indicate which features affect a prediction and whether pointwise biases or implausibilities exist. A concrete use case shows that this is valuable for both machine learning modelers and persons subject to a decision. We formalize the search for IRDs as an optimization problem and introduce a unifying framework for computing IRDs that covers desiderata, initialization techniques, and a post-processing method. We show how existing hyperbox methods can be adapted to fit into this unified framework. A benchmark study compares the methods based on several quality measures and identifies two strategies to improve IRDs.

Dokument bearbeiten Dokument bearbeiten