Abstract
Concept-based explanation methods, such as Concept Activation Vectors, are potent means to quantify how abstract or high-level characteristics of input data influence the predictions of complex deep neural networks. However, applying them to industrial prediction problems is challenging as it is not immediately clear how to define and access appropriate concepts for individual use cases and specific data types. In this work, we investigate how to leverage established concept-based explanation techniques in the context of bearing fault detection with deep neural networks trained on vibration signals. Since bearings are prevalent in almost every rotating equipment, ensuring the reliability of intransparent fault detection models is crucial to prevent costly repairs and downtimes of industrial machinery. Our evaluations demonstrate that explaining opaque models in terms of vibration concepts enables human-comprehensible and intuitive insights about their inner workings, but the underlying assumptions need to be carefully validated first.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Lehrstühle/Arbeitsgruppen > Lehrstuhl für Statistik und ihre Anwendungen in Wirtschafts- und Sozialwissenschaften
Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
ISBN: | 978-1-6654-9313-0 ; 978-1-6654-9314-7 |
Ort: | [Piscataway, NJ] |
Sprache: | Englisch |
Dokumenten ID: | 121942 |
Datum der Veröffentlichung auf Open Access LMU: | 04. Nov. 2024 14:08 |
Letzte Änderungen: | 04. Nov. 2024 14:08 |