Abstract
Mesh-based cortical surface reconstruction is a fundamental task in neuroimaging that enables highly accurate measurements of brain morphology. Vertex correspondence between a patient’s cortical mesh and a group template is necessary for comparing cortical thickness and other measures at the vertex level. However, post-processing methods for generating vertex correspondence are time-consuming and involve registering and remeshing a patient’s surfaces to an atlas. Recent deep learning methods for cortex reconstruction have neither been optimized for generating vertex correspondence nor have they analyzed the quality of such correspondence. In this work, we propose to learn vertex correspondence by optimizing an L1 loss on registered surfaces instead of the commonly used Chamfer loss. This results in improved inter- and intra-subject correspondence suitable for direct group comparison and atlas-based parcellation. We demonstrate that state-of-the-art methods provide insufficient correspondence for mapping parcellations, highlighting the importance of optimizing for accurate vertex correspondence.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Medizin > Klinikum der LMU München > Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ISBN: | 978-3-031-43992-6 ; 978-3-031-43993-3 |
Ort: | Cham |
Bemerkung: | Teil von: International Conference on Medical Image Computing and Computer-Assisted Intervention ; Lecture Notes in Computer Science (LNCS, Band 14227) |
Sprache: | Englisch |
Dokumenten ID: | 121945 |
Datum der Veröffentlichung auf Open Access LMU: | 29. Okt. 2024 15:04 |
Letzte Änderungen: | 29. Okt. 2024 15:04 |