Abstract
The alkaline oxygen evolution reaction (OER) is a promising avenue for producing clean fuels and storing intermittent energy. However, challenges such as excessive OH− consumption and strong adsorption of oxygen-containing intermediates hinder the development of alkaline OER. In this study, we propose a cooperative strategy by leveraging both nano-scale and atomically local electric fields for alkaline OER, demonstrated through the synthesis of Mn single atom doped CoP nanoneedles (Mn SA-CoP NNs). Finite element method simulations and density functional theory calculations predict that the nano-scale local electric field enriches OH− around the catalyst surface, while the atomically local electric field improves *O desorption. Experimental validation using in situ attenuated total reflection infrared and Raman spectroscopy confirms the effectiveness of the nano-scale and atomically electric fields. Mn SA-CoP NNs exhibit an ultra-low overpotential of 189 mV at 10 mA cm−2 and stable operation over 100 hours at ~100 mA cm−2 during alkaline OER. This innovative strategy provides new insights for enhancing catalyst performance in energy conversion reactions.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Physik > Theoretische Physik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 530 Physik |
URN: | urn:nbn:de:bvb:19-epub-122393-0 |
ISSN: | 1433-7851 |
Sprache: | Englisch |
Dokumenten ID: | 122393 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Nov. 2024 11:33 |
Letzte Änderungen: | 19. Nov. 2024 11:33 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390776260 |