Abstract
Although beryllium and its compounds show outstanding properties, owing to its toxic potential and extreme reaction conditions the chemistry of Be under high-pressure conditions has only been investigated sparsely. Herein, we report on the highly condensed wurtzite-type Be2PN3, which was synthesized from Be3N2 and P3N5 in a high-pressure high-temperature approach at 9 GPa and 1500 °C. It is the missing member in the row of formula type M2PN3 (M = Mg, Zn). The structure was elucidated by powder X-ray diffraction (PXRD), revealing that Be2PN3 is a double nitride, rather than a nitridophosphate. The structural model was further corroborated by 9Be and 31P solid-state nuclear magnetic resonance (NMR) spectroscopy. We present 9Be NMR data for tetrahedral nitride coordination for the first time. Infrared and energy-dispersive X-ray spectroscopy (FTIR and EDX), as well as temperature dependent PXRD complement the analytical characterization. Density functional theory (DFT) calculations reveal super-incompressible behavior and the remarkable hardness of this low-density material. The formation of Be2PN3 through a high-pressure high-temperature approach expands the synthetic access to Be-containing compounds and may open access to various multinary beryllium nitrides.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
URN: | urn:nbn:de:bvb:19-epub-122398-9 |
ISSN: | 1433-7851 |
Sprache: | Englisch |
Dokumenten ID: | 122398 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Nov. 2024 10:51 |
Letzte Änderungen: | 19. Nov. 2024 10:51 |