Abstract
We characterize Riemannian orbifolds with an upper curvature bound in the Alexandrov sense as reflectofolds, i.e., Riemannian orbifolds all of whose local groups are generated by reflections, with the same upper bound on the sectional curvature. Combined with a result by Lytchak–Thorbergsson this implies that a quotient of a Riemannian manifold by a closed group of isometries has locally bounded curvature (from above) in the Alexandrov sense if and only if it is a reflectofold.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1083-4362 |
Sprache: | Englisch |
Dokumenten ID: | 122605 |
Datum der Veröffentlichung auf Open Access LMU: | 19. Nov. 2024 12:54 |
Letzte Änderungen: | 19. Nov. 2024 12:54 |