Abstract
Background: Juvenile strokes (< 55 years) account for about 15% of all ischemic strokes. Structured data on clinical outcome in those patients are sparse. Here, we aimed to fill this gap by systematically collecting relevant data and modeling a juvenile stroke prediction score for the 3-month functional outcome. Methods: We retrospectively integrated and analyzed clinical and outcome data of juvenile stroke and TIA patients treated at the LMU University Hospital, LMU Munich, Munich. Good outcome was defined as a modified Rankin Scale of 0–2 or return to baseline of function. We analyzed candidate predictors and developed a predictive model. Predictive abilities were inspected using Area Under the ROC curve (AUROC) and visual representation of the calibration. The model was validated internally. Results : 346 patients were included in the analysis. We observed a good outcome in n = 293 patients (84.7%). The prediction model for an unfavourable outcome had an AUROC of 89.1% (95% CI 83.3–93.1%). The model includes age NIHSS, ASPECTS, blood glucose and type of vessel occlusion as predictors for the individual patient outcome. Conclusions: Here, we introduce the highly accurate PREDICT-score for the 3-month outcome after juvenile stroke derived from clinical routine data. The PREDICT-score might be helpful in guiding individual patient decisions and designing future studies but needs further prospective validation which is already planned.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie
Medizin > Institut für Schlaganfall- und Demenzforschung (ISD) Medizin > Klinikum der LMU München > Neurologische Klinik und Poliklinik mit Friedrich-Baur-Institut Medizin > Klinikum der LMU München > Klinik und Poliklinik für Radiologie |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-122665-7 |
ISSN: | 0340-5354 |
Sprache: | Englisch |
Dokumenten ID: | 122665 |
Datum der Veröffentlichung auf Open Access LMU: | 22. Nov. 2024 12:57 |
Letzte Änderungen: | 11. Dez. 2024 12:54 |