Abstract
This paper investigates the remaining useful lifetime (RUL) estimation of bearings under dynamic, i.e., time-varying, operating conditions (OC). Unlike conventional studies that assume constant OC in bearing accelerated life tests, we introduce a dataset with time-varying OC during run-to-failure experiments, simulating real-world scenarios. We explore data-driven approaches to identify the transition point from a healthy to an unhealthy state and estimate the RUL. Additionally, we examine strategies for integrating OC information to enhance RUL estimations. These methodologies are evaluated through numerical experiments using various machine learning algorithms.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Publikationsform: | Publisher's Version |
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
URN: | urn:nbn:de:bvb:19-epub-123217-4 |
ISSN: | 2325-016X |
Sprache: | Englisch |
Dokumenten ID: | 123217 |
Datum der Veröffentlichung auf Open Access LMU: | 18. Dez. 2024 12:34 |
Letzte Änderungen: | 18. Dez. 2024 12:34 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 451737409 |