Abstract
Anomaly detection in imbalanced datasets is a frequent and crucial problem, especially in the medical domain where retrieving and labeling irregularities is often expensive. By combining the generative stability of a β-variational autoencoder (VAE) with the discriminative strengths of generative adversarial networks (GANs), we propose a novel model, β-VAEGAN. We investigate methods for composing anomaly scores based on the discriminative and reconstructive capabilities of our model. Existing work focuses on linear combinations of these components to determine if data is anomalous. We advance existing work by training a kernelized support vector machine (SVM) on the respective error components to also consider nonlinear relationships. This improves anomaly detection performance, while allowing faster optimization. Lastly, we use the deviations from the Gaussian prior of β-VAEGAN to form a novel anomaly score component. In comparison to state-of-the-art work, we improve the F 1 score during anomaly detection from 0.85 to 0.92 on the widely used MITBIH Arrhythmia Database.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Lehrstühle/Arbeitsgruppen > Computationale Statistik
Mathematik, Informatik und Statistik > Informatik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik
500 Naturwissenschaften und Mathematik > 510 Mathematik 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ISBN: | 979-8-3503-8164-1 ; 979-8-3503-8165-8 |
Ort: | Piscataway, NJ |
Sprache: | Englisch |
Dokumenten ID: | 123432 |
Datum der Veröffentlichung auf Open Access LMU: | 30. Jan. 2025 08:29 |
Letzte Änderungen: | 30. Jan. 2025 08:29 |