ORCID: https://orcid.org/0000-0003-4523-2668; Maritsch, Martin
ORCID: https://orcid.org/0000-0001-9920-0587; Weenen, Eva Van
ORCID: https://orcid.org/0000-0001-5500-2108; Feuerriegel, Stefan
ORCID: https://orcid.org/0000-0001-7856-8729; Pfäffli, Matthias
ORCID: https://orcid.org/0000-0003-2712-8672; Fleisch, Elgar
ORCID: https://orcid.org/0000-0002-4842-1117; Weinmann, Wolfgang
ORCID: https://orcid.org/0000-0001-8659-1304 und Wortmann, Felix
ORCID: https://orcid.org/0000-0001-5034-2023
(2023):
Leveraging driver vehicle and environment interaction: Machine learning using driver monitoring cameras to detect drunk driving.
CHI conference on Human Factors in Computing Systems (CHI), Hamburg, Germany, 23. - 28. April 2023.
Schmidt, Albrecht
ORCID: https://orcid.org/0000-0003-3890-1990 (Hrsg.):
In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems,
322
New York: Association for Computing Machinery.
[PDF, 8MB]

Abstract
Excessive alcohol consumption causes disability and death. Digital interventions are promising means to promote behavioral change and thus prevent alcohol-related harm, especially in critical moments such as driving. This requires real-time information on a person’s blood alcohol concentration (BAC). Here, we develop an in-vehicle machine learning system to predict critical BAC levels. Our system leverages driver monitoring cameras mandated in numerous countries worldwide. We evaluate our system with n = 30 participants in an interventional simulator study. Our system reliably detects driving under any alcohol influence (area under the receiver operating characteristic curve [AUROC] 0.88) and driving above the WHO recommended limit of 0.05 g/dL BAC (AUROC 0.79). Model inspection reveals reliance on pathophysiological effects associated with alcohol consumption. To our knowledge, we are the first to rigorously evaluate the use of driver monitoring cameras for detecting drunk driving. Our results highlight the potential of driver monitoring cameras and enable next-generation drunk driver interaction preventing alcohol-related harm.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Betriebswirtschaft > Institute of Artificial Intelligence (AI) in Management |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik
300 Sozialwissenschaften > 330 Wirtschaft |
URN: | urn:nbn:de:bvb:19-epub-123779-9 |
ISBN: | 978-1-4503-9421-5 |
Ort: | New York |
Sprache: | Englisch |
Dokumenten ID: | 123779 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Feb. 2025 15:23 |
Letzte Änderungen: | 25. Feb. 2025 15:23 |