Abstract
Accurate classification of Acute Myeloid Leukemia (AML) subtypes is crucial for clinical decision-making and patient care. In this study, we investigate the potential presence of age and sex bias in AML subtype classification using Multiple Instance Learning (MIL) architectures. To that end, we train multiple MIL models using different levels of sex imbalance in the training set and excluding certain age groups. To assess the sex bias, we evaluate the performance of the models on male and female test sets. For age bias, models are tested against underrepresented age groups in the training data. We find a significant effect of sex and age bias on the performance of the model for AML subtype classification. Specifically, we observe that females are more likely to be affected by sex imbalance dataset and certain age groups, such as patients with 72 to 86 years of age with the RUNX1::RUNX1T1 genetic subtype, are significantly affected by an age bias present in the training data. Ensuring inclusivity in the training data is thus essential for generating reliable and equitable outcomes in AML genetic subtype classification, ultimately benefiting diverse patient populations.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Medizin > Klinikum der LMU München > Medizinische Klinik und Poliklinik III (Onkologie)
Medizin > Klinikum der LMU München > Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
ISBN: | 978-3-031-45248-2 ; 978-3-031-45249-9 |
ISSN: | 0302-9743 |
Ort: | Cham |
Sprache: | Englisch |
Dokumenten ID: | 123794 |
Datum der Veröffentlichung auf Open Access LMU: | 25. Feb. 2025 15:56 |
Letzte Änderungen: | 25. Feb. 2025 15:56 |