Abstract
In linear mixed models the assumption of normally distributed random effects is often inappropriate and unnecessary restrictive. The proposed Dirichlet process mixture assumes a hierarchical Gaussian mixture. In addition to the weakening of distributions assumptions the specification allows to estimate clusters of observations with a similar random effects structure identified. An Expectation-Maximization algorithm is given that solves the estimation problem and that exhibits advantages over in this framework usually used Markov chain Monte Carlo approaches. The method is evaluated in a simulation study and applied to dynamics of unemployment in Germany as well as lung function growth data.
Dokumententyp: | Paper |
---|---|
Publikationsform: | Submitted Version |
Keywords: | Dirichlet process mixture, mixed models, likelihood inference, EM algorithm |
Fakultät: | Mathematik, Informatik und Statistik > Statistik > Technische Reports |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-12422-8 |
Sprache: | Englisch |
Dokumenten ID: | 12422 |
Datum der Veröffentlichung auf Open Access LMU: | 17. Nov. 2011, 17:20 |
Letzte Änderungen: | 04. Nov. 2020, 12:53 |