Abstract
In linear mixed models the assumption of normally distributed random effects is often inappropriate and unnecessary restrictive. The proposed Dirichlet process mixture assumes a hierarchical Gaussian mixture. In addition to the weakening of distributions assumptions the specification allows to estimate clusters of observations with a similar random effects structure identified. An Expectation-Maximization algorithm is given that solves the estimation problem and that exhibits advantages over in this framework usually used Markov chain Monte Carlo approaches. The method is evaluated in a simulation study and applied to dynamics of unemployment in Germany as well as lung function growth data.
Item Type: | Paper |
---|---|
Form of publication: | Submitted Version |
Keywords: | Dirichlet process mixture, mixed models, likelihood inference, EM algorithm |
Faculties: | Mathematics, Computer Science and Statistics > Statistics > Technical Reports |
Subjects: | 500 Science > 510 Mathematics |
URN: | urn:nbn:de:bvb:19-epub-12422-8 |
Language: | English |
Item ID: | 12422 |
Date Deposited: | 17. Nov 2011, 17:20 |
Last Modified: | 04. Nov 2020, 12:53 |