ORCID: https://orcid.org/0000-0002-8932-2553; Leonardo, Cristina; Kepesidis, Kosmas V.; Fleischmann, Frank; Linkohr, Birgit
ORCID: https://orcid.org/0000-0002-3387-5685; Meyer, Daniel; Zoka, Viola; Huber, Marinus; Voronina, Liudmila; Richter, Lothar; Peters, Annette
ORCID: https://orcid.org/0000-0001-6645-0985 und Žigman, Mihaela
ORCID: https://orcid.org/0000-0001-8306-1922
(16. Juli 2024):
Plasma infrared fingerprinting with machine learning enables single-measurement multi-phenotype health screening.
In: Cell Reports Medicine, Bd. 5, Nr. 7, 101625
[PDF, 4MB]

Abstract
Infrared spectroscopy is a powerful technique for probing the molecular profiles of complex biofluids, offering a promising avenue for high-throughput in vitro diagnostics. While several studies showcased its potential in detecting health conditions, a large-scale analysis of a naturally heterogeneous potential patient population has not been attempted. Using a population-based cohort, here we analyze 5,184 blood plasma samples from 3,169 individuals using Fourier transform infrared (FTIR) spectroscopy. Applying a multi-task classification to distinguish between dyslipidemia, hypertension, prediabetes, type 2 diabetes, and healthy states, we find that the approach can accurately single out healthy individuals and characterize chronic multimorbid states. We further identify the capacity to forecast the development of metabolic syndrome years in advance of onset. Dataset-independent testing confirms the robustness of infrared signatures against variations in sample handling, storage time, and measurement regimes. This study provides the framework that establishes infrared molecular fingerprinting as an efficient modality for populational health diagnostics.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-124430-1 |
ISSN: | 26663791 |
Sprache: | Englisch |
Dokumenten ID: | 124430 |
Datum der Veröffentlichung auf Open Access LMU: | 10. Mrz. 2025 08:23 |
Letzte Änderungen: | 10. Mrz. 2025 08:23 |