ORCID: https://orcid.org/0000-0002-7042-594X; Biedebach, Luka; Küpfer, Andreas
ORCID: https://orcid.org/0000-0002-4110-0775 und Neunhoeffer, Marcel
ORCID: https://orcid.org/0000-0002-9137-5785
(2024):
The role of hyperparameters in machine learning models and how to tune them.
In: Political Science Research and Methods, Bd. 12, Nr. 4: S. 841-848
[PDF, 156kB]

Abstract
Hyperparameters critically influence how well machine learning models perform on unseen, out-of-sample data. Systematically comparing the performance of different hyperparameter settings will often go a long way in building confidence about a model's performance. However, analyzing 64 machine learning related manuscripts published in three leading political science journals (APSR, PA, and PSRM) between 2016 and 2021, we find that only 13 publications (20.31 percent) report the hyperparameters and also how they tuned them in either the paper or the appendix. We illustrate the dangers of cursory attention to model and tuning transparency in comparing machine learning models’ capability to predict electoral violence from tweets. The tuning of hyperparameters and their documentation should become a standard component of robustness checks for machine learning models.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik |
Themengebiete: | 300 Sozialwissenschaften > 310 Statistiken
300 Sozialwissenschaften > 320 Politik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-124437-1 |
ISSN: | 2049-8470 |
Sprache: | Englisch |
Dokumenten ID: | 124437 |
Datum der Veröffentlichung auf Open Access LMU: | 10. Mrz. 2025 08:49 |
Letzte Änderungen: | 10. Mrz. 2025 08:49 |