ORCID: https://orcid.org/0000-0001-9038-9045; Rabus, Maximilian
ORCID: https://orcid.org/0000-0003-0755-1772 und Hüllermeier, Eyke
ORCID: https://orcid.org/0000-0002-9944-4108
(28. Januar 2025):
Pairwise Difference Learning for Classification.
27th International Conference, DS 2024, Pisa, Italy, October 14–16, 2024.
Monreale, Anna; Guidotti, Riccardo und Naretto, Francesca (Hrsg.):
In: Discovery Science,
Bd. 15244
Springer Nature Switzerland. S. 284-299
[PDF, 2MB]
Abstract
Pairwise difference learning (PDL) has recently been introduced as a new meta-learning technique for regression. Instead of learning a mapping from instances to outcomes in the standard way, the key idea is to learn a function that takes two instances as input and predicts the difference between the respective outcomes. Given a function of this kind, predictions for a query instance are derived from every training example and then averaged. This paper extends PDL toward the task of classification and proposes a meta-learning technique for inducing a PDL classifier by solving a suitably defined (binary) classification problem on a paired version of the original training data. We analyze the performance of the PDL classifier in a large-scale empirical study and find that it outperforms state-of-the-art methods in terms of prediction performance. Last but not least, we provide an easy-to-use and publicly available implementation of PDL in a Python package.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Publikationsform: | Publisher's Version |
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
URN: | urn:nbn:de:bvb:19-epub-124448-2 |
ISBN: | 978-3-031-78980-9 |
ISSN: | 0302-9743 |
Sprache: | Englisch |
Dokumenten ID: | 124448 |
Datum der Veröffentlichung auf Open Access LMU: | 20. Feb. 2025 10:47 |
Letzte Änderungen: | 20. Feb. 2025 14:04 |