ORCID: https://orcid.org/0000-0001-6112-4136; Jansen, Christoph
ORCID: https://orcid.org/0000-0002-5648-4687; Schollmeyer, Georg
ORCID: https://orcid.org/0000-0002-6199-1886 und Augustin, Thomas
ORCID: https://orcid.org/0000-0002-1854-6226
(2023):
In All Likelihoods. Robust Selection of Pseudo-Labeled Data.
13th International Symposium on Imprecise Probabilities - Theories and Applications (ISIPTA), Oviedo, Spain, 11. - 14. Juli 2023.
Miranda, Enrique; Montes, Ignacio; Quaeghebeur, Erik und Vantaggi, Barbara (Hrsg.):
In: International Symposium on Imprecise Probability: Theories and Applications, Proceedings of Machine Learning Research
Bd. 215
MLResearchPress. S. 412-425
Abstract
Self-training is a simple yet effective method within semi-supervised learning. Self-training’s rationale is to iteratively enhance training data by adding pseudo-labeled data. Its generalization performance heavily depends on the selection of these pseudo-labeled data (PLS). In this paper, we render PLS more robust towards the involved modeling assumptions. To this end, we treat PLS as a decision problem, which allows us to introduce a generalized utility function. The idea is to select pseudo-labeled data that maximize a multi-objective utility function. We demonstrate that the latter can be constructed to account for different sources of uncertainty and explore three examples: model selection, accumulation of errors and covariate shift. In the absence of second-order information on such uncertainties, we furthermore consider the generic approach of the generalized Bayesian α -cut updating rule for credal sets. We spotlight the application of three of our robust extensions on both simulated and three real-world data sets. In a benchmarking study, we compare these extensions to traditional PLS methods. Results suggest that robustness with regard to model choice can lead to substantial accuracy gains.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Statistik |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik
500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 2640-3498 |
Sprache: | Englisch |
Dokumenten ID: | 124488 |
Datum der Veröffentlichung auf Open Access LMU: | 08. Mrz. 2025 08:29 |
Letzte Änderungen: | 08. Mrz. 2025 08:29 |