ORCID: https://orcid.org/0000-0002-2910-1142; Prokisch, Holger
ORCID: https://orcid.org/0000-0003-2379-6286; Thorand, Barbara
ORCID: https://orcid.org/0000-0002-8416-6440; Adamski, Jerzy
ORCID: https://orcid.org/0000-0001-9259-0199; Kastenmüller, Gabi
ORCID: https://orcid.org/0000-0002-2368-7322; Waldenberger, Melanie
ORCID: https://orcid.org/0000-0003-0583-5093; Gieger, Christian
ORCID: https://orcid.org/0000-0001-6986-9554; Peters, Annette
ORCID: https://orcid.org/0000-0001-6645-0985; Suhre, Karsten
ORCID: https://orcid.org/0000-0001-9638-3912; Bönhof, Gidon J.
ORCID: https://orcid.org/0000-0003-1446-6592; Rathmann, Wolfgang
ORCID: https://orcid.org/0000-0001-7804-1740; Roden, Michael
ORCID: https://orcid.org/0000-0001-8200-6382; Grallert, Harald
ORCID: https://orcid.org/0000-0002-6876-9655; Ziegler, Dan
ORCID: https://orcid.org/0000-0001-8956-3552; Herder, Christian
ORCID: https://orcid.org/0000-0002-2050-093X und Menden, Michael P.
ORCID: https://orcid.org/0000-0003-0267-5792
(16. Dezember 2024):
Interpretable multimodal machine learning (IMML) framework reveals pathological signatures of distal sensorimotor polyneuropathy.
In: Communications Medicine, Bd. 4, 265
[PDF, 1MB]

Abstract
Background: Distal sensorimotor polyneuropathy (DSPN) is a common neurological disorder in elderly adults and people with obesity, prediabetes and diabetes and is associated with high morbidity and premature mortality. DSPN is a multifactorial disease and not fully understood yet.
Methods: Here, we developed the Interpretable Multimodal Machine Learning (IMML) framework for predicting DSPN prevalence and incidence based on sparse multimodal data. Exploiting IMMLs interpretability further empowered biomarker identification. We leveraged the population-based KORA F4/FF4 cohort including 1091 participants and their deep multimodal characterisation, i.e. clinical data, genomics, methylomics, transcriptomics, proteomics, inflammatory proteins and metabolomics.
Results: Clinical data alone is sufficient to stratify individuals with and without DSPN (AUROC = 0.752), whilst predicting DSPN incidence 6.5 ± 0.2 years later strongly benefits from clinical data complemented with two or more molecular modalities (improved ΔAUROC > 0.1, achieved AUROC of 0.714). Important and interpretable features of incident DSPN prediction include up-regulation of proinflammatory cytokines, down-regulation of SUMOylation pathway and essential fatty acids, thus yielding novel insights in the disease pathophysiology.
Conclusions: These may become biomarkers for incident DSPN, guide prevention strategies and serve as proof of concept for the utility of IMML in studying complex diseases.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-124691-5 |
ISSN: | 2730-664X |
Sprache: | Englisch |
Dokumenten ID: | 124691 |
Datum der Veröffentlichung auf Open Access LMU: | 13. Mrz. 2025 07:28 |
Letzte Änderungen: | 13. Mrz. 2025 07:28 |