ORCID: https://orcid.org/0000-0001-7150-4618; Wimmer, Lisa; Nagler, Thomas und Hüllermeier, Eyke
ORCID: https://orcid.org/0000-0002-9944-4108
(15. Juli 2024):
Label-wise Aleatoric and Epistemic Uncertainty Quantification.
Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, Barcelona, Spain, 15. - 19. July 2024.
Kiyavash, Negar und Mooij, Joris M. (Hrsg.):
Proceedings of Machine Learning Research.
Bd. 244
PMLR. S. 3159-3179
[PDF, 1MB]

Abstract
We present a novel approach to uncertainty quantification in classification tasks based on label-wise decomposition of uncertainty measures. This label-wise perspective allows uncertainty to be quantified at the individual class level, thereby improving cost-sensitive decision-making and helping understand the sources of uncertainty. Furthermore, it allows to define total, aleatoric, and epistemic uncertainty on the basis of non-categorical measures such as variance, going beyond common entropy-based measures. In particular, variance-based measures address some of the limitations associated with established methods that have recently been discussed in the literature. We show that our proposed measures adhere to a number of desirable properties. Through empirical evaluation on a variety of benchmark data sets – including applications in the medical domain where accurate uncertainty quantification is crucial – we establish the effectiveness of label-wise uncertainty quantification.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
URN: | urn:nbn:de:bvb:19-epub-124769-8 |
Dokumenten ID: | 124769 |
Datum der Veröffentlichung auf Open Access LMU: | 17. Mrz. 2025 08:51 |
Letzte Änderungen: | 17. Mrz. 2025 09:01 |