ORCID: https://orcid.org/0000-0003-4750-5092
(Juli 2021):
Sparse recovery in bounded Riesz systems with applications to numerical methods for PDEs.
In: Applied and Computational Harmonic Analysis, Bd. 53: S. 231-269
Abstract
We study sparse recovery with structured random measurement matrices having independent, identically distributed, and uniformly bounded rows and with a nontrivial covariance structure. This class of matrices arises from random sampling of bounded Riesz systems and generalizes random partial Fourier matrices. Our main result improves the currently available results for the null space and restricted isometry properties of such random matrices. The main novelty of our analysis is a new upper bound for the expectation of the supremum of a Bernoulli process associated with a restricted isometry constant. We apply our result to prove new performance guarantees for the CORSING method, a recently introduced numerical approximation technique for partial differential equations (PDEs) based on compressive sensing.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Keywords: | Compressive sensing; Restricted isometry constants; Bounded Riesz systems; Numerical PDEsCORSING method; Generic chaining |
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Lehrstuhl für Mathematik der Informationsverarbeitung |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 10635203 |
Sprache: | Englisch |
Dokumenten ID: | 125102 |
Datum der Veröffentlichung auf Open Access LMU: | 28. Apr. 2025 14:12 |
Letzte Änderungen: | 28. Apr. 2025 14:12 |