Logo Logo
Hilfe
Hilfe
Switch Language to English

Rauhut, Holger ORCID logoORCID: https://orcid.org/0000-0003-4750-5092 und Schwab, Christoph (2016): Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations. In: Mathematics of Computation, Bd. 86, Nr. 304: S. 661-700

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

We analyze the convergence of compressive sensing based sampling techniques for the efficient evaluation of functionals of solutions for a class of high-dimensional, affine-parametric, linear operator equations which depend on possibly infinitely many parameters. The proposed algorithms are based on so-called non-intrusive sampling of the high-dimensional parameter space, reminiscent of Monte-Carlo sampling. In contrast to Monte-Carlo, however, a functional of the parametric solution is then computed via compressive sensing methods from samples of functionals of the solution. A key ingredient in our analysis of independent interest consists in a generalization of recent results on the approximate sparsity of generalized polynomial chaos representations (gpc) of the parametric solution families, in terms of the gpc series with respect to tensorized Chebyshev polynomials. In particular, we establish sufficient conditions on the parametric inputs to the parametric operator equation such that the Chebyshev coefficients of the gpc expansion are contained in certain weighted $\ell_p$-spaces for $0

Dokument bearbeiten Dokument bearbeiten