ORCID: https://orcid.org/0000-0003-4750-5092 und Ward, Rachel
(2011):
Low-rank Matrix Recovery via Iteratively Reweighted Least Squares Minimization.
In: SIAM Journal on Optimization, Bd. 21, Nr. 4: S. 1614-1640
Abstract
We present and analyze an efficient implementation of an iteratively reweighted least squares algorithm for recovering a matrix from a small number of linear measurements. The algorithm is designed for the simultaneous promotion of both a minimal nuclear norm and an approximately low-rank solution. Under the assumption that the linear measurements fulfill a suitable generalization of the null space property known in the context of compressed sensing, the algorithm is guaranteed to recover iteratively any matrix with an error of the order of the best k-rank approximation. In certain relevant cases, for instance, for the matrix completion problem, our version of this algorithm can take advantage of the Woodbury matrix identity, which allows us to expedite the solution of the least squares problems required at each iteration. We present numerical experiments which confirm the robustness of the algorithm for the solution of matrix completion problems, and we demonstrate its competitiveness with respect to other techniques proposed recently in the literature.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Lehrstuhl für Mathematik der Informationsverarbeitung |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1052-6234 |
Sprache: | Englisch |
Dokumenten ID: | 125141 |
Datum der Veröffentlichung auf Open Access LMU: | 28. Apr. 2025 15:44 |
Letzte Änderungen: | 28. Apr. 2025 15:44 |