Logo Logo
Hilfe
Hilfe
Switch Language to English

Prestin, Jürgen; Quak, Ewald; Rauhut, Holger ORCID logoORCID: https://orcid.org/0000-0003-4750-5092 und Selig, Kathi (2003): On the Connection of Uncertainty Principles for Functions on the Circle and on the Real Line. In: Journal of Fourier Analysis and Applications, Bd. 9, Nr. 4: S. 387-409

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

An uncertainty principle for 2π-periodic functions and the classical Heisenberg uncertainty principle are shown to be linked by a limit process. Dependent on a parameter, a function on the real line generates periodic functions either by periodization or sampling. It is proven that under certain smoothness conditions, the periodic uncertainty products of the generated functions converge to the real-line uncertainty product of the original function if the parameter tends to infinity. These results are used to find asymptotically optimal sequences for the periodic uncertainty principle, based either on Theta functions or trigonometric polynomials obtained by sampling B-splines.

Dokument bearbeiten Dokument bearbeiten