ORCID: https://orcid.org/0000-0002-2419-3519; Holzhauser, Stephan
ORCID: https://orcid.org/0009-0002-9344-5879; Barthmes, Maria; Richter, Lars
ORCID: https://orcid.org/0000-0003-0819-9248; Knechtel, Fabian; Ploetz, Evelyn; George, Michael
ORCID: https://orcid.org/0000-0001-9831-585X; Fertig, Niels
ORCID: https://orcid.org/0000-0002-9731-2283; Kamińska, Izabela und Tinnefeld, Philip
ORCID: https://orcid.org/0000-0003-4290-7770
(2025):
Integration of highly sensitive large-area graphene-based biosensors in an automated sensing platform.
In: Measurement, Bd. 240, 115592
[PDF, 3MB]

Abstract
Graphene-based biosensors, featuring exceptional electronic, mechanical, and surface properties, have emerged as frontrunners in advanced sensing technologies. However, to achieve widespread industrial adoption, advancements in the fabrication and integration of large-area graphene devices are essential. Critical parameters such as enhanced sensitivity, scalable production methods, economic viability, integration capabilities, and consistent uniformity must be meticulously addressed. In this work, we demonstrate that our ultra-clean, chemical wet transfer protocol of large-area graphene enables a scalable, smooth integration of graphene into an established assay platform for transporter protein drug discovery. Furthermore, we demonstrate sensitive detection of electrolytic buffers, varying pH, bovine serum albumin (BSA) and single-stranded DNA (ssDNA) adsorption, using our large-area graphene solution-gated field-effect transistor (SGFET) sensors, thereby proving their robust and reliable performance. The sensors’ biocompatibility and ion sensitivity, down to the picomolar range, substantiate their suitability for the investigation of electroactive transport in ion channels and membrane transporters.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Chemie und Pharmazie > Department Chemie |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 540 Chemie |
URN: | urn:nbn:de:bvb:19-epub-125319-4 |
ISSN: | 02632241 |
Sprache: | Englisch |
Dokumenten ID: | 125319 |
Datum der Veröffentlichung auf Open Access LMU: | 12. Mai 2025 07:58 |
Letzte Änderungen: | 12. Mai 2025 07:58 |