ORCID: https://orcid.org/0000-0003-2744-5854
(13. Juni 2025):
Negative Spectrum of Schrödinger Operators with Rapidly Oscillating Potentials.
In: Annales Henri Poincaré, Bd. 26: S. 81-97
[PDF, 380kB]

Abstract
For Schrödinger operators with potentials that are asymptotically homogeneous of degree -2, the size of the coupling determines whether it has finite or infinitely many negative eigenvalues. In the latter case, the asymptotic accumulation of these eigenvalues at zero has been determined by Kirsch and Simon. A similar regime occurs for potentials that are not asymptotically monotone but oscillatory. In this case, when the ratio between the amplitude and frequency of oscillation is asymptotically homogeneous of degree -1, the coupling determines the finiteness of the negative spectrum. We present a new proof of this fact by making use of a ground-state representation. As a consequence of this approach, we derive an asymptotic formula analogous to that of Kirsch and Simon.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-125883-3 |
ISSN: | 1424-0637 |
Sprache: | Englisch |
Dokumenten ID: | 125883 |
Datum der Veröffentlichung auf Open Access LMU: | 08. Mai 2025 04:41 |
Letzte Änderungen: | 08. Mai 2025 04:41 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 470903074 |