ORCID: https://orcid.org/0000-0002-5039-8278; Marschner, Sebastian
ORCID: https://orcid.org/0000-0002-8121-358X; Wei, Chengtao; Ribeiro, Marvin F.; Corradini, Stefanie
ORCID: https://orcid.org/0000-0001-8709-7252; Belka, Claus
ORCID: https://orcid.org/0000-0002-1287-7825; Landry, Guillaume
ORCID: https://orcid.org/0000-0003-1707-4068 und Kurz, Christopher
(2025):
Personalized deep learning auto‐segmentation models for adaptive fractionated magnetic resonance‐guided radiation therapy of the abdomen.
In: Medical Physics, Bd. 52, Nr. 4: S. 2295-2304
[PDF, 1MB]

Abstract
Background: Manual contour corrections during fractionated magnetic resonance (MR)-guided radiotherapy (MRgRT) are time-consuming. Conventional population models for deep learning auto-segmentation might be suboptimal for MRgRT at MR-Linacs since they do not incorporate manual segmentation from treatment planning and previous fractions.
Purpose: In this work, we investigate patient-specific (PS) auto-segmentation methods leveraging expert-segmented planning and prior fraction MR images (MRIs) to improve auto-segmentation on consecutive treatment days.
Conclusion: Personalized auto-segmentation models outperformed the population BMs. In most cases, PS(BM) delineations were judged to be directly usable for treatment adaptation without further corrections, suggesting a potential time saving during fractionated treatment.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Medizin > Klinikum der LMU München > Klinik und Poliklinik für Strahlentherapie und Radioonkologie |
Themengebiete: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin und Gesundheit |
URN: | urn:nbn:de:bvb:19-epub-126206-8 |
ISSN: | 0094-2405 |
Sprache: | Englisch |
Dokumenten ID: | 126206 |
Datum der Veröffentlichung auf Open Access LMU: | 26. Mai 2025 16:50 |
Letzte Änderungen: | 26. Mai 2025 16:50 |