ORCID: https://orcid.org/0009-0004-7825-9458; Gabriel, Alice‐Agnes
ORCID: https://orcid.org/0000-0003-0112-8412; Premus, Jan
ORCID: https://orcid.org/0000-0002-7964-2668 und Gallovič, František
ORCID: https://orcid.org/0000-0002-9268-3923
(2024):
The Linked Complexity of Coseismic and Postseismic Faulting Revealed by Seismo‐Geodetic Dynamic Inversion of the 2004 Parkfield Earthquake.
In: Journal of Geophysical Research: Solid Earth, Bd. 129, Nr. 12, e2024JB029410
[PDF, 5MB]

Abstract
Several regularly recurring moderate-size earthquakes motivated dense instrumentation of the Parkfield section of the San Andreas fault (SAF), providing an invaluable near-fault observatory. We present a seismo-geodetic dynamic inversion of the 2004 Parkfield earthquake, which illuminates the interlinked complexity of faulting across time scales. Using fast-velocity-weakening rate-and-state friction, we jointly model coseismic dynamic rupture and the 90-day evolution of postseismic slip in a 3D domain. We utilize a parallel tempering Markov chain Monte Carlo approach to solve this non-linear high-dimensional inverse problem, constraining spatially varying prestress and fault friction parameters by 30 strong motion and 12 GPS stations. From visiting 2 million models, we discern complex coseismic rupture dynamics that transition from a strongly radiating pulse-like phase to a mildly radiating crack-like phase. Both coseismic phases are separated by a shallow strength barrier that nearly arrests rupture and leads to a gap in the afterslip, reflecting the geologic heterogeneity along this segment of the SAF. Coseismic rupture termination involves distinct arrest mechanisms that imprint on afterslip kinematics. A backward propagating afterslip front may drive delayed aftershock activity above the hypocenter. Trade-off analysis of the 10,500 best-fitting models uncovers local correlations between prestress levels and the reference friction coefficient, alongside an anticorrelation between prestress and rate-state parameters. We find that a complex, fault-local interplay of dynamic parameters determines the nucleation, propagation, and arrest of both, co- and postseismic faulting. This study demonstrates the potential of inverse physics-based modeling to reveal novel insights and detailed characterizations of well-recorded earthquakes.
Dokumententyp: | Zeitschriftenartikel |
---|---|
EU Funded Grant Agreement Number: | 852992; 101093038; 101058129; 101058518 |
Fakultät: | Geowissenschaften > Department für Geo- und Umweltwissenschaften |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften, Geologie |
URN: | urn:nbn:de:bvb:19-epub-126209-9 |
ISSN: | 2169-9313 |
Sprache: | Englisch |
Dokumenten ID: | 126209 |
Datum der Veröffentlichung auf Open Access LMU: | 26. Mai 2025 16:54 |
Letzte Änderungen: | 26. Mai 2025 16:54 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 495931446 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 518204048 |