ORCID: https://orcid.org/0000-0003-3955-3510; Muschalik, Maximilian
ORCID: https://orcid.org/0000-0002-6921-0204; Hammer, Barbara
ORCID: https://orcid.org/0000-0002-0935-5591; Hüllermeier, Eyke
ORCID: https://orcid.org/0000-0002-9944-4108 und Wachsmuth, Henning
(April 2025):
Adaptive Prompting: Ad-hoc Prompt Composition for Social Bias Detection.
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), Albuquerque, New Mexico, USA, 29. April - 4. May 2025.
Chiruzzo, Luis; Ritter, Alan und Wang, Lu (Hrsg.):
Albuquerque, New Mexico: Association for Computational Linguistics. S. 2421-2449
[PDF, 4MB]

Abstract
Recent advances on instruction fine-tuning have led to the development of various prompting techniques for large language models, such as explicit reasoning steps. However, the success of techniques depends on various parameters, such as the task, language model, and context provided. Finding an effective prompt is, therefore, often a trial-and-error process. Most existing approaches to automatic prompting aim to optimize individual techniques instead of compositions of techniques and their dependence on the input. To fill this gap, we propose an adaptive prompting approach that predicts the optimal prompt composition ad-hoc for a given input. We apply our approach to social bias detection, a highly context-dependent task that requires semantic understanding. We evaluate it with three large language models on three datasets, comparing compositions to individual techniques and other baselines. The results underline the importance of finding an effective prompt composition. Our approach robustly ensures high detection performance, and is best in several settings. Moreover, first experiments on other tasks support its generalizability.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
URN: | urn:nbn:de:bvb:19-epub-126290-8 |
Ort: | Albuquerque, New Mexico |
Dokumenten ID: | 126290 |
Datum der Veröffentlichung auf Open Access LMU: | 23. Mai 2025 14:25 |
Letzte Änderungen: | 26. Mai 2025 12:21 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 438445824 |