ORCID: https://orcid.org/0000-0001-7134-2495
(2023):
Robust sensing of low-rank matrices with non-orthogonal sparse decomposition.
In: Applied and Computational Harmonic Analysis, Bd. 67, 101569
Abstract
We consider the problem of recovering an unknown low-rank matrix with (possibly) non-orthogonal, effectively sparse rank-1 decomposition from measurements y gathered in a linear measurement process . We propose a variational formulation that lends itself to alternating minimization and whose global minimizers provably approximate up to noise level. Working with a variant of robust injectivity, we derive reconstruction guarantees for various choices of including sub-gaussian, Gaussian rank-1, and heavy-tailed measurements. Numerical experiments support the validity of our theoretical considerations.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Professur für Mathematische Grundlagen des Verständnisses der künstlichen Intelligenz |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 10635203 |
Sprache: | Englisch |
Dokumenten ID: | 126378 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Mai 2025 07:51 |
Letzte Änderungen: | 27. Mai 2025 07:51 |