ORCID: https://orcid.org/0000-0001-7134-2495 und Saab, Rayan
(2023):
A simple approach for quantizing neural networks.
In: Applied and Computational Harmonic Analysis, Bd. 66: S. 138-150
Abstract
In this short note, we propose a new method for quantizing the weights of a fully trained neural network. A simple deterministic pre-processing step allows us to quantize network layers via memoryless scalar quantization while preserving the network performance on given training data. On one hand, the computational complexity of this pre-processing slightly exceeds that of state-of-the-art algorithms in the literature. On the other hand, our approach does not require any hyper-parameter tuning and, in contrast to previous methods, allows a plain analysis. We provide rigorous theoretical guarantees in the case of quantizing single network layers and show that the relative error decays with the number of parameters in the network if the training data behave well, e.g., if it is sampled from suitable random distributions. The developed method also readily allows the quantization of deep networks by consecutive application to single layers.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Professur für Mathematische Grundlagen des Verständnisses der künstlichen Intelligenz |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 1063-5203 |
Sprache: | Englisch |
Dokumenten ID: | 126381 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Mai 2025 09:12 |
Letzte Änderungen: | 27. Mai 2025 09:12 |