ORCID: https://orcid.org/0000-0001-9738-2487
(2020):
Discussion of: “Nonparametric regression using deep neural networks with ReLU activation function”.
In: Annals of Statistics, Bd. 48, Nr. 4: S. 1902-1905
Abstract
I would like to congratulate Johannes Schmidt–Hieber on a very interesting paper in which he considers regression functions belonging to the class of so-called compositional functions and analyzes the ability of estimators based on the multivariate nonparametric regression model of deep neural networks to achieve minimax rates of convergence.
In my discussion, I will first regard such a type of result from the general viewpoint of the theoretical foundations of deep neural networks. This will be followed by a discussion from the viewpoint of expressivity, optimization and generalization. Finally, I will consider some specific aspects of the main result.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Professur für Mathematische Grundlagen des Verständnisses der künstlichen Intelligenz |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0090-5364 |
Sprache: | Englisch |
Dokumenten ID: | 126399 |
Datum der Veröffentlichung auf Open Access LMU: | 27. Mai 2025 10:21 |
Letzte Änderungen: | 27. Mai 2025 10:21 |