ORCID: https://orcid.org/0000-0001-9738-2487
  
(2020):
		Discussion of: “Nonparametric regression using deep neural networks with ReLU activation function”.
	
	 In: Annals of Statistics, Bd. 48, Nr.  4: S. 1902-1905
	
      
        
      
Abstract
I would like to congratulate Johannes Schmidt–Hieber on a very interesting paper in which he considers regression functions belonging to the class of so-called compositional functions and analyzes the ability of estimators based on the multivariate nonparametric regression model of deep neural networks to achieve minimax rates of convergence.
In my discussion, I will first regard such a type of result from the general viewpoint of the theoretical foundations of deep neural networks. This will be followed by a discussion from the viewpoint of expressivity, optimization and generalization. Finally, I will consider some specific aspects of the main result.
| Dokumententyp: | Zeitschriftenartikel | 
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Professur für Mathematische Grundlagen des Verständnisses der künstlichen Intelligenz | 
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik | 
| ISSN: | 0090-5364 | 
| Sprache: | Englisch | 
| Dokumenten ID: | 126399 | 
| Datum der Veröffentlichung auf Open Access LMU: | 27. Mai 2025 10:21 | 
| Letzte Änderungen: | 27. Mai 2025 10:21 | 
		
	