ORCID: https://orcid.org/0000-0001-9738-2487
(2008):
Density of frames and Schauder bases of windowed exponentials.
In: Houston Journal of Mathematics, Bd. 34, Nr. 2: S. 565-600
Abstract
This paper proves that every frame of windowed exponentials satises a Strong Homogeneous Approximation Property with respect to its canonical dual frame, and a Weak Homogeneous Approximation Property with respect to an arbitrary dual frame. As a consequence, a simple proof of the Nyquist density phenomenon satised by frames of windowed expo- nentials with one or nitely many generators is obtained. The more delicate cases of Schauder bases and exact systems of windowed exponentials are also studied. New results on the relationship between density and frame bounds for frames of windowed exponentials are obtained. In particular, it is shown that a tight frame of windowed exponentials must have uniform Beurling density.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Professur für Mathematische Grundlagen des Verständnisses der künstlichen Intelligenz |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0362-1588 |
Dokumenten ID: | 126459 |
Datum der Veröffentlichung auf Open Access LMU: | 18. Jun. 2025 11:16 |
Letzte Änderungen: | 18. Jun. 2025 11:16 |