ORCID: https://orcid.org/0000-0001-9738-2487
(2002):
Linear independence of time-frequency shifts under a generalized Schrödinger representation.
In: Archiv der Mathematik, Bd. 78: S. 135-144
Abstract
Let ρR be the classical Schrödinger representation of the Heisenberg group and let Λ be a finite subset of R×R. The question of when the set of functions {t↦e2πiytf(t+x)=(ρR(x,y,1)f)(t):(x,y)∈Λ}
is linearly independent for all f∈L2(R),f≠0, arises from Gabor analysis. We investigate an analogous problem for locally compact abelian groups G. For a finite subset Λ of G×G^
and ρG the Schrödinger representation of the Heisenberg group associated with G, we give a necessary and in many situations also sufficient condition for the set {ρG(x,w,1)f:(x,w)∈Λ}
to be linearly independent for all f∈L2(G),f≠0.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Professur für Mathematische Grundlagen des Verständnisses der künstlichen Intelligenz |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 0003-889X |
Sprache: | Englisch |
Dokumenten ID: | 126498 |
Datum der Veröffentlichung auf Open Access LMU: | 18. Jun. 2025 05:48 |
Letzte Änderungen: | 18. Jun. 2025 05:48 |