ORCID: https://orcid.org/0000-0001-9738-2487
  
(September 2002):
		The Balian–Low theorem for symplectic lattices in higher dimensions.
	
	 In: Applied and Computational Harmonic Analysis, Bd. 13, Nr.  2: S. 169-176
	
      
        
      
Abstract
The Balian-Low theorem expresses the fact that time-frequency concentration is incompatible with non-redundancy for Gabor systems that form orthonormal or Riesz bases for L-2(R). We extend the Balian-Low theorem for Riesz bases to higher dimensions, obtaining a weak form valid for all sets of time-frequency shifts which form a lattice in R-2d, and a strong form valid for symplectic lattices in R-2d. For the orthonormal basis case, we obtain a strong form valid for general non-lattice sets which are symmetric with respect to the origin. (C) 2002 Elsevier Science (USA). All rights reserved.
| Dokumententyp: | Zeitschriftenartikel | 
|---|---|
| Keywords: | Balian-Low theorem; frames; Gabor systems; modulation spaces; symplectic; matrices; uncertainty principles; GABOR FRAMES; Mathematics; Applied; Physics; Mathematical | 
| Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Professur für Mathematische Grundlagen des Verständnisses der künstlichen Intelligenz | 
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik | 
| ISSN: | 10635203 | 
| Sprache: | Englisch | 
| Dokumenten ID: | 126500 | 
| Datum der Veröffentlichung auf Open Access LMU: | 18. Jun. 2025 05:41 | 
| Letzte Änderungen: | 18. Jun. 2025 05:41 | 
 
		 
	 
    


