ORCID: https://orcid.org/0000-0001-9738-2487
(September 2002):
The Balian–Low theorem for symplectic lattices in higher dimensions.
In: Applied and Computational Harmonic Analysis, Bd. 13, Nr. 2: S. 169-176
Abstract
The Balian-Low theorem expresses the fact that time-frequency concentration is incompatible with non-redundancy for Gabor systems that form orthonormal or Riesz bases for L-2(R). We extend the Balian-Low theorem for Riesz bases to higher dimensions, obtaining a weak form valid for all sets of time-frequency shifts which form a lattice in R-2d, and a strong form valid for symplectic lattices in R-2d. For the orthonormal basis case, we obtain a strong form valid for general non-lattice sets which are symmetric with respect to the origin. (C) 2002 Elsevier Science (USA). All rights reserved.
Dokumententyp: | Zeitschriftenartikel |
---|---|
Keywords: | Balian-Low theorem; frames; Gabor systems; modulation spaces; symplectic; matrices; uncertainty principles; GABOR FRAMES; Mathematics; Applied; Physics; Mathematical |
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Professur für Mathematische Grundlagen des Verständnisses der künstlichen Intelligenz |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
ISSN: | 10635203 |
Sprache: | Englisch |
Dokumenten ID: | 126500 |
Datum der Veröffentlichung auf Open Access LMU: | 18. Jun. 2025 05:41 |
Letzte Änderungen: | 18. Jun. 2025 05:41 |