ORCID: https://orcid.org/0000-0002-4302-8762 und Kutyniok, Gitta
ORCID: https://orcid.org/0000-0001-9738-2487
:
Expressivity of Spiking Neural Networks.
UniReps: the First Workshop on Unifying Representations in Neural Models, New Orleans, USA, 15. Dezember 2023.
Abstract
The synergy between spiking neural networks and neuromorphic hardware holds promise for the development of energy-efficient AI applications. Inspired by this potential, we revisit the foundational aspects to study the capabilities of spiking neural networks where information is encoded in the firing time of neurons. Under the Spike Response Model as a mathematical model of a spiking neuron with a linear response function, we compare the expressive power of artificial and spiking neural networks, where we initially show that they realize piecewise linear mappings. In contrast to ReLU networks, we prove that spiking neural networks can realize both continuous and discontinuous functions. Moreover, we provide complexity bounds on the size of spiking neural networks to emulate multi-layer (ReLU) neural networks. Restricting to the continuous setting, we also establish complexity bounds in the reverse direction for one-layer spiking neural networks.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Professur für Mathematische Grundlagen des Verständnisses der künstlichen Intelligenz |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Dokumenten ID: | 126816 |
Datum der Veröffentlichung auf Open Access LMU: | 17. Jun. 2025 14:25 |
Letzte Änderungen: | 17. Jun. 2025 14:25 |