ORCID: https://orcid.org/0000-0001-9738-2487
:
Weisfeiler and Leman Go Loopy: A New Hierarchy for Graph Representational Learning.
Advances in Neural Information Processing Systems 37 (NeurIPS 2024), Vancouver Convention Centre, 10. – 15. Dezember 2024.
[PDF, 829kB]
Abstract
We introduce -loopy Weisfeiler-Leman ( - WL), a novel hierarchy of graph isomorphism tests and a corresponding GNN framework, - MPNN, that can count cycles up to length . Most notably, we show that - WL can count homomorphisms of cactus graphs. This strictly extends classical 1-WL, which can only count homomorphisms of trees and, in fact, is incomparable to -WL for any fixed . We empirically validate the expressive and counting power of the proposed - MPNN on several synthetic datasets and present state-of-the-art predictive performance on various real-world datasets.
Dokumententyp: | Konferenzbeitrag (Paper) |
---|---|
Fakultät: | Mathematik, Informatik und Statistik > Mathematik > Professur für Mathematische Grundlagen des Verständnisses der künstlichen Intelligenz |
Themengebiete: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
URN: | urn:nbn:de:bvb:19-epub-126819-7 |
Sprache: | Englisch |
Dokumenten ID: | 126819 |
Datum der Veröffentlichung auf Open Access LMU: | 17. Jun. 2025 12:05 |
Letzte Änderungen: | 17. Jun. 2025 12:05 |