ORCID: https://orcid.org/0009-0007-6956-7389; Scheder, Leonie; Zarivach, Raz
ORCID: https://orcid.org/0000-0001-6543-0296; Algov, Itay
ORCID: https://orcid.org/0000-0003-2180-5628; Chemla, Yonatan
ORCID: https://orcid.org/0000-0002-0465-9393; Popp, Felix; Riese, Cornelius
ORCID: https://orcid.org/0000-0003-0800-4543; Charsooghi, Mohammad A.
ORCID: https://orcid.org/0000-0002-7772-8513; Alfonta, Lital
ORCID: https://orcid.org/0000-0002-3805-8625; Meijler, Michael M.
ORCID: https://orcid.org/0000-0001-7095-1467; Schüler, Dirk
ORCID: https://orcid.org/0000-0002-2327-0762; Faivre, Damien
ORCID: https://orcid.org/0000-0001-6191-3389 und Pfeiffer, Daniel
ORCID: https://orcid.org/0000-0002-1401-533X
(2025):
A Two-Protein Chemoreceptor Complex Regulates Oxygen Thresholds in Bacterial Magneto-Aerotaxis.
In: Advanced Science, Bd. 12, Nr. 34, e17315
[PDF, 6MB]
Abstract
Bacteria in changing environments rely on motility and sensory mechanisms to locate optimal conditions. This process depends on specialized chemoreceptors to sense environmental stimuli. Exceptionally high numbers of chemoreceptor genes are present in magnetotactic bacteria (MTB), which combine magnetic alignment via intracellular magnetic nanoparticles (magnetosomes) and oxygen sensing for a unique navigation strategy toward low-oxygen zones, called magneto-aerotaxis. However, chemoreceptors for aerotaxis in MTB have not been experimentally identified. This study examines chemoreceptors in the model MTB Magnetospirillum gryphiswaldense. Gene deletion analysis shows that M. gryphiswaldense relies on a complex and partly redundant set of chemoreceptors to sense oxygen. Within this diverse repertoire of chemoreceptors, a receptor formed by two interacting proteins is identified that plays a key role in aerotaxis. Interaction assays and microscopy confirm that both proteins interact within polar-lateral regions in the cell. Moreover, genetic, biochemical, and motility experiments demonstrate that the chemoreceptor complex promotes a cellular response away from oxygen via the redox cofactor flavin adenine dinucleotide (FAD), independent of magnetic fields. These findings provide first insights into how MTB control oxygen sensing at the molecular level, shedding light on the mechanisms underlying bacterial navigation and highly complex chemosensory systems.
| Dokumententyp: | Zeitschriftenartikel |
|---|---|
| EU Funded Grant Agreement Number: | 692637 |
| Fakultät: | Geowissenschaften > Department für Geo- und Umweltwissenschaften > Projekte > SPP 2404 DeepDyn |
| Themengebiete: | 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie |
| URN: | urn:nbn:de:bvb:19-epub-128735-7 |
| ISSN: | 2198-3844 |
| Dokumenten ID: | 128735 |
| Datum der Veröffentlichung auf Open Access LMU: | 04. Nov. 2025 09:47 |
| Letzte Änderungen: | 04. Nov. 2025 09:47 |
| DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 521548282 |
| DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 500707704 |
| DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 228478880 |
| DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 525457187 |
