Logo Logo
Hilfe
Hilfe
Switch Language to English

Kölle, Michael; Matheis, Tim; Altmann, Philipp ORCID logoORCID: https://orcid.org/0000-0003-1134-176X und Schmid, Kyrill (2023): Learning to Participate Through Trading of Reward Share. ICAART 2023 : International Conference on Agents and Artificial Intelligence, Lissabon, Portugal, 22. - 24. Februar 2023. Rocha, Ana Paula; Steels, Luc und Herik, Jaap van den (Hrsg.): In: Proceedings of the 15th International Conference on Agents and Artificial Intelligence, Bd. 1 Setúbal: SciTePress. S. 355-362

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

Enabling autonomous agents to act cooperatively is an important step to integrate artificial intelligence in our daily lives. While some methods seek to stimulate cooperation by letting agents give rewards to others, in this paper we propose a method inspired by the stock market, where agents have the opportunity to participate in other agents’ returns by acquiring reward shares. Intuitively, an agent may learn to act according to the common interest when being directly affected by the other agents’ rewards. The empirical results of the tested general-sum Markov games show that this mechanism promotes cooperative policies among independently trained agents in social dilemma situations. Moreover, as demonstrated in a temporally and spatially extended domain, participation can lead to the development of roles and the division of subtasks between the agents.

Dokument bearbeiten Dokument bearbeiten