ORCID: https://orcid.org/0000-0001-7707-1358; Phan, Thomy; Illium, Steffen und Linnhoff-Popien, Claudia
ORCID: https://orcid.org/0000-0001-6284-9286
(2024):
Aquarium: A Comprehensive Framework for Exploring Predator-Prey Dynamics Through Multi-Agent Reinforcement Learning Algorithms.
ICAART 2024: International Conference on Agents and Artificial Intelligence, Rom, Italien, 24. - 26. Februar 2024.
Rocha, Ana Paula; Steels, Luc und Herik, Jaap van den (Hrsg.):
In: Proceedings of the 16th International Conference on Agents and Artificial Intelligence,
Bd. 1
Setúbal: SciTePress. S. 59-70
Abstract
Recent advances in Multi-Agent Reinforcement Learning have prompted the modeling of intricate interactions between agents in simulated environments. In particular, the predator-prey dynamics have captured substantial interest and various simulations been tailored to unique requirements. To prevent further time-intensive developments, we introduce Aquarium, a comprehensive Multi-Agent Reinforcement Learning environment for predator-prey interaction, enabling the study of emergent behavior. Aquarium is open source and offers a seamless integration of the PettingZoo framework, allowing a quick start with proven algorithm implementations. It features physics-based agent movement on a two-dimensional, edge-wrapping plane. The agent-environment interaction (observations, actions, rewards) and the environment settings (agent speed, prey reproduction, predator starvation, and others) are fully customizable. Besides a resource-efficient visualization, Aquarium supports to record video files, providing a visual comprehension of agent behavior. To demonstrate the environment’s capabilities, we conduct preliminary studies which use PPO to train multiple prey agents to evade a predator. In accordance to the literature, we find Individual Learning to result in worse performance than Parameter Sharing, which significantly improves coordination and sample-efficiency.
| Dokumententyp: | Konferenzbeitrag (Paper) |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
| Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
| ISBN: | 978-989-758-680-4 |
| Ort: | Setúbal |
| Sprache: | Englisch |
| Dokumenten ID: | 128853 |
| Datum der Veröffentlichung auf Open Access LMU: | 05. Nov. 2025 15:42 |
| Letzte Änderungen: | 05. Nov. 2025 15:51 |
