ORCID: https://orcid.org/0000-0003-3108-713X; Schuman, Daniëlle und Linnhoff-Popien, Claudia
ORCID: https://orcid.org/0000-0001-6284-9286
(2024):
Towards Efficient Quantum Anomaly Detection: One-Class SVMs Using Variable Subsampling and Randomized Measurements.
ICAART 2024 : International Conference on Agents and Artificial Intelligence, Rome, Italy, 25.- 25. Februar 2024.
Rocha, Ana Paula; Steels, Luc und Herik, Jaap van den (Hrsg.):
In: Proceedings of the 16th International Conference on Agents and Artificial Intelligence,
Bd. 2
Setúbal: SciTePress. S. 324-335
Abstract
Quantum computing, with its potential to enhance various machine learning tasks, allows significant advancements in kernel calculation and model precision. Utilizing the one-class Support Vector Machine alongside a quantum kernel, known for its classically challenging representational capacity, notable improvements in average precision compared to classical counterparts were observed in previous studies. Conventional calculations of these kernels, however, present a quadratic time complexity concerning data size, posing challenges in practical applications. To mitigate this, we explore two distinct approaches: utilizing randomized measurements to evaluate the quantum kernel and implementing the variable subsampling ensemble method, both targeting linear time complexity. Experimental results demonstrate a substantial reduction in training and inference times by up to 95% and 25% respectively, employing these methods. Although unstable, the average precision of randomized measurements discernibly surpasses that of the classical Radial Basis Function kernel, suggesting a promising direction for further research in scalable, efficient quantum computing applications in machine learning.
| Dokumententyp: | Konferenzbeitrag (Paper) |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
| Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
| ISBN: | 978-989-758-680-4 |
| Ort: | Setúbal |
| Sprache: | Englisch |
| Dokumenten ID: | 128857 |
| Datum der Veröffentlichung auf Open Access LMU: | 06. Nov. 2025 17:07 |
| Letzte Änderungen: | 06. Nov. 2025 17:07 |
