ORCID: https://orcid.org/0000-0001-5727-9151; Roshani, Navid; Zorn, Maximilian
ORCID: https://orcid.org/0009-0006-2750-7495; Altmann, Philipp
ORCID: https://orcid.org/0000-0003-1134-176X; Kölle, Michael und Linnhoff-Popien, Claudia
ORCID: https://orcid.org/0000-0001-6284-9286
(2024):
Improving Parameter Training for VQEs by Sequential Hamiltonian Assembly.
ICAART 2024: 16th International Conference on Agents and Artificial Intelligence, Rome, Italy, 24. - 26. Februar 2024.
Rocha, Ana Paula; Steels, Luc und Herik, Jaap van den (Hrsg.):
In: Proceedings of the 16th International Conference on Agents and Artificial Intelligence,
Bd. 2
Setúbal: SciTePress. S. 99-109
Abstract
A central challenge in quantum machine learning is the design and training of parameterized quantum circuits (PQCs). Similar to deep learning, vanishing gradients pose immense problems in the trainability of PQCs, which have been shown to arise from a multitude of sources. One such cause are non-local loss functions, that demand the measurement of a large subset of involved qubits. To facilitate the parameter training for quantum applications using global loss functions, we propose a Sequential Hamiltonian Assembly (SHA) approach, which iteratively approximates the loss function using local components. Aiming for a prove of principle, we evaluate our approach using Graph Coloring problem with a Varational Quantum Eigensolver (VQE). Simulation results show, that our approach outperforms conventional parameter training by 29.99% and the empirical state of the art, Layerwise Learning, by 5.12% in the mean accuracy. This paves the way towards locality-aware learning techniques, allowing to evade vanishing gradients for a large class of practically relevant problems.
| Dokumententyp: | Konferenzbeitrag (Paper) |
|---|---|
| Fakultät: | Mathematik, Informatik und Statistik > Informatik > Künstliche Intelligenz und Maschinelles Lernen |
| Themengebiete: | 000 Informatik, Informationswissenschaft, allgemeine Werke > 004 Informatik |
| ISBN: | 978-989-758-680-4 |
| Ort: | Setúbal |
| Sprache: | Englisch |
| Dokumenten ID: | 128874 |
| Datum der Veröffentlichung auf Open Access LMU: | 13. Nov. 2025 15:05 |
| Letzte Änderungen: | 13. Nov. 2025 15:06 |
