Logo Logo
Hilfe
Hilfe
Switch Language to English

Stein, Jonas ORCID logoORCID: https://orcid.org/0000-0001-5727-9151; Roshani, Navid; Zorn, Maximilian ORCID logoORCID: https://orcid.org/0009-0006-2750-7495; Altmann, Philipp ORCID logoORCID: https://orcid.org/0000-0003-1134-176X; Kölle, Michael und Linnhoff-Popien, Claudia ORCID logoORCID: https://orcid.org/0000-0001-6284-9286 (2024): Improving Parameter Training for VQEs by Sequential Hamiltonian Assembly. ICAART 2024: 16th International Conference on Agents and Artificial Intelligence, Rome, Italy, 24. - 26. Februar 2024. Rocha, Ana Paula; Steels, Luc und Herik, Jaap van den (Hrsg.): In: Proceedings of the 16th International Conference on Agents and Artificial Intelligence, Bd. 2 Setúbal: SciTePress. S. 99-109

Volltext auf 'Open Access LMU' nicht verfügbar.

Abstract

A central challenge in quantum machine learning is the design and training of parameterized quantum circuits (PQCs). Similar to deep learning, vanishing gradients pose immense problems in the trainability of PQCs, which have been shown to arise from a multitude of sources. One such cause are non-local loss functions, that demand the measurement of a large subset of involved qubits. To facilitate the parameter training for quantum applications using global loss functions, we propose a Sequential Hamiltonian Assembly (SHA) approach, which iteratively approximates the loss function using local components. Aiming for a prove of principle, we evaluate our approach using Graph Coloring problem with a Varational Quantum Eigensolver (VQE). Simulation results show, that our approach outperforms conventional parameter training by 29.99% and the empirical state of the art, Layerwise Learning, by 5.12% in the mean accuracy. This paves the way towards locality-aware learning techniques, allowing to evade vanishing gradients for a large class of practically relevant problems.

Dokument bearbeiten Dokument bearbeiten